Theory of evidence for face detection and tracking
نویسندگان
چکیده
This paper deals with face detection and tracking by computer vision for multimedia applications. Contrary to current techniques that are based on huge learning databases and complex algorithms to get generic face models (e.g. active appearance models), the proposed method handles simple contextual knowledge representative of the application background thanks to a quick supervised initialization. The transferable belief model is used to counteract the incompleteness of the prior model due first to a lack of exhaustiveness of the learning stage and secondly to the subjectivity of the task of face segmentation. The algorithm contains two main steps: detection and tracking. In the detection phase, an evidential face model is estimated by merging basic beliefs elaborated from Viola and Jones face detector and from a skin colour detector, for the assignment of mass functions. These functions are computed as the merging of sources in a specific nonlinear colour space. In order to deal with colour information dependence in the fusion process, the Denœux cautious rule is used. The pignistic probabilities stemming from the face model guarantee the compatibility between the belief framework and the probabilistic framework. They are the entries of a bootstrap particle filter which yields face tracking at video rate. We show that the proper tuning of the evidential model parameters improves the tracking performance in realtime. Quantitative evaluation of the proposed method gives a detection rate reaching 80%, comparable to what can be found in the literature. However the proposed method requires only a weak initialization.
منابع مشابه
A New Method for Eye Detection in Color Images
The problem of eye detection in face images is very important for a large number of applications ranging from face recognition to gaze tracking. In this paper we propose a new algorithm for eyes detection. First, the face region is extracted from the image by skin-color information. Second, horizontal projection in image is used to approximate region of the eye be obtained . At last, the eye ce...
متن کاملA New Method for Eye Detection in Color Images
The problem of eye detection in face images is very important for a large number of applications ranging from face recognition to gaze tracking. In this paper we propose a new algorithm for eyes detection. First, the face region is extracted from the image by skin-color information. Second, horizontal projection in image is used to approximate region of the eye be obtained . At last, the eye ce...
متن کاملApplying mean shift and motion detection approaches to hand tracking in sign language
Hand gesture recognition is very important to communicate in sign language. In this paper, an effective object tracking and hand gesture recognition method is proposed. This method is combination of two well-known approaches, the mean shift and the motion detection algorithm. The mean shift algorithm can track objects based on the color, then when hand passes the face occlusion happens. Several...
متن کاملNeural Network Performance Analysis for Real Time Hand Gesture Tracking Based on Hu Moment and Hybrid Features
This paper presents a comparison study between the multilayer perceptron (MLP) and radial basis function (RBF) neural networks with supervised learning and back propagation algorithm to track hand gestures. Both networks have two output classes which are hand and face. Skin is detected by a regional based algorithm in the image, and then networks are applied on video sequences frame by frame in...
متن کاملCovariance Analysis of a vector tracking GPS receiver based on MMSE multiuser Detection
In high dynamic conditions, using vector tracking loops instead of scalar tracking loops in GPS receivers is proved as an efficient method to compensate the performance. The Minimum Mean Squared Error detector as a multiuser detector is applied in the vector tracking loop for more reliability and efficiency. The Kalman filter does the two tasks of tracking and extracting the navigation data aft...
متن کاملOnline multiple people tracking-by-detection in crowded scenes
Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Approx. Reasoning
دوره 53 شماره
صفحات -
تاریخ انتشار 2012